z-logo
open-access-imgOpen Access
Genetic Control or Repair and Adaptive Response to Low-Level DNA Damage
Author(s) -
James E. Haber
Publication year - 2009
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/965273
Subject(s) - homologous recombination , rad52 , dna repair , biology , non homologous end joining , genetics , flp frt recombination , dna , heterologous , dna damage , recombination , recombinase , endonuclease , genetic recombination , microbiology and biotechnology , rad51 , gene
Research was focused on how a single double-strand break - a model of low-dose ionizing radiation-induced DNA damage - could be studied in a simple model system, budding yeast. Breaks were induced in several different ways. We used the site-specific HO endonuclease to create a single DSB in all cells of the population so that its fate could be extensively analyzed genetically and molecularly. We also used two heterologous systems, the plant DS element and the Rag1/Rag2 proteins, to generate different types of DSBs, these containing hairpin ends that needed to be cleaved open before end-joining could take place. All three approaches yielded important new findings. We also extended our analysis of the Mre11 protein that plays key roles in both NHEJ and in homologous recombination. Finally we analyzed the poorly understood recombination events that were independent of the key recombination protein, Rad52. This line of inquiry was strongly motivated by the fact that vertebrate cells do not rely strongly on Rad52 for homologous recombination, so that some clues about alternative mechanisms could be gained by understanding how Rad52-independent recombination occurred. We found that the Mre11 complex was the most important element in Rad52-independent recombination

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom