Criticality Expermints with Subcritical Clusters of 2.35 Wt% and 4.31 Wt% 2.35U Enriched UO2 Rods in Water at a Water-to-Fuel Volume Ratio of 1.6
Author(s) -
S. R. Bierman,
E. D. Clayton
Publication year - 1980
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/958674
Subject(s) - criticality , materials science , spent nuclear fuel , rod , zirconium , surface area to volume ratio , coolant , neutron poison , neutron capture , volume (thermodynamics) , neutron , analytical chemistry (journal) , neutron flux , nuclear chemistry , metallurgy , nuclear physics , chemistry , physics , thermodynamics , medicine , alternative medicine , pathology , chromatography
The fourth in a series of Nuclear Regulatory Commission funded criticality experiments have provided data for 2.35 wt% and 4.31 wt% {sup 235}U enriched U0{sub 2} rods at a water-to-fuel volume ratio of 1.6. The results from some 147 critical experiments are presented. They include for each enrichment: {sm_bullet}The critical size of single lattices or clusters of fuel {sm_bullet}The critical separation between sub-critical clusters of fuel {sm_bullet}The critical separation between sub-critical clusters of fuel having fixed neutron absorbers between the fuel clusters {sm_bullet}The isolation distance between fuel clusters {sm_bullet}The critical size of fuel clusters containing water holes and voids {sm_bullet}The critical size of fuel clusters separated by flux traps The fixed neutron absorbers for which data were obtained include 304-L steel, borated 304-L steel, copper, copper containing 1 wt% cadmium, cadmium, aluminium, zirconium and two trade name materials containing boron (Boral and Borofl ex)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom