Study of multicomponent diffusion and transport phenomena. Technical report, July 1, 1984--June 30, 1995
Author(s) -
Hiroshi Sato
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/95471
Subject(s) - thermodynamics , statistical physics , transport phenomena , ionic bonding , lattice (music) , diffusion , lattice diffusion coefficient , materials science , condensed matter physics , chemical physics , chemistry , physics , effective diffusion coefficient , ion , quantum mechanics , acoustics , medicine , radiology , magnetic resonance imaging
This progress report summarizes a project to treat the diffusion and transport phenomena in multicomponent systems from an atomistic point of view mainly by means of a kinetic method based on the Cluster Variation Method (CVM)-Path Probability Method (PPM) formalism. As is well known, the CVM has established itself as one of the most systematic methods of statistical thermodynamics, and macroscopic phenomena treated by thermodynamics can thus be investigated atomistically in great detail. The author describes work in a number of different applications, summarized here by the section titles: percolation threshold in electronic conduction {beta}-alumina type solid electrolytes; mixed alkali effect; chemical diffusion problem; soft lattice gas model and rigid lattice gas model; diffusion in semiconductors; diffusion in ordered alloys; kinetics of relaxation process of hopping ionic conduction
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom