Degradation mode survey of titanium-base alloys
Author(s) -
G.E. Gdowski,
H.S. Ahluwalia
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/94656
Subject(s) - titanium , crevice corrosion , corrosion , materials science , metallurgy , cracking , stress corrosion cracking , degradation (telecommunications) , hydrogen , hydride , precipitation , radioactive waste , titanium alloy , composite material , nuclear chemistry , chemistry , alloy , metal , telecommunications , meteorology , computer science , physics , organic chemistry
Of the materials reviewed, commercially pure titanium, Ti Gr 2, is the most susceptible to crevice corrosion. Ti Gr 7, 12, and 16 are likely to be resistant to crevice corrosion under the current expected Yucca Mountain repository conditions. Although Grade 7 has the greatest resistance to crevice corrosion it is also the most expensive. Although the possibility of sustained loads cracking exists, it has not yet been observed in a Ti alloys. For hydride precipitation to occur 100{degrees}C, the hydrogen concentration would need to be relatively high, much higher than the maximum amount of hydrogen allowed during the manufacture of ({alpha} Ti alloys (0.0 15 wt%). A large amount of (SCC) stress corrosion cracking data accumulated at SNL and BNL for the WIPP program and by the Canadian Waste Management Program on titanium grades 2 and 12 indicates that there is no SCC at naturally occurring potentials in various brines. Hydride-induced cracking of titanium is a possibility and therefore, further investigation of this phenomenon under credible repository conditions is warranted. One disadvantage of titanium and its alloys is that their strengths decrease rather rapidly with temperature. This is due to the strong temperature dependence of interstitial solute strengthening mechanisms. Ti Gr 12 and 16 are recommended for further consideration as candidate materials for high level nuclear waste containers
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom