z-logo
open-access-imgOpen Access
Selected test results from the LiFeBatt iron phosphate Li-ion battery.
Author(s) -
David Ingersoll,
Thomas J. Hund
Publication year - 2008
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/940537
Subject(s) - voltage , materials science , electrical engineering , battery (electricity) , electrolyte , analytical chemistry (journal) , power (physics) , chemistry , optoelectronics , electrode , engineering , physics , thermodynamics , chromatography
In this paper the performance of the LiFeBatt Li-ion cell was measured using a number of tests including capacity measurements, capacity as a function of temperature, ohmic resistance, spectral impedance, high power partial state of charge (PSOC) pulsed cycling, pulse power measurements, and an over-charge/voltage abuse test. The goal of this work was to evaluate the performance of the iron phosphate Li-ion battery technology for utility applications requiring frequent charges and discharges, such as voltage support, frequency regulation, and wind farm energy smoothing. Test results have indicated that the LiFeBatt battery technology can function up to a 10C{sub 1} discharge rate with minimal energy loss compared to the 1 h discharge rate (1C). The utility PSOC cycle test at up to the 4C{sub 1} pulse rate completed 8,394 PSOC pulsed cycles with a gradual loss in capacity of 10 to 15% depending on how the capacity loss is calculated. The majority of the capacity loss occurred during the initial 2,000 cycles, so it is projected that the LiFeBatt should PSOC cycle well beyond 8,394 cycles with less than 20% capacity loss. The DC ohmic resistance and AC spectral impedance measurements also indicate that there were only very small changes after cycling. Finally, at a 1C charge rate, the over charge/voltage abuse test resulted in the cell venting electrolyte at 110 C after 30 minutes and then open-circuiting at 120 C with no sparks, fire, or voltage across the cell

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom