Study of the Ds+ to K+K-e+ nu Decay Channel with the BaBar Experiment
Author(s) -
J. Serrano
Publication year - 2008
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
Resource type - Reports
DOI - 10.2172/937199
Subject(s) - physics , particle physics , hadron , branching fraction , nuclear physics , normalization (sociology) , semileptonic decay , quantum chromodynamics , lepton , electron , sociology , anthropology
Charm semileptonic decays allow a validation of lattice QCD calculations through the measurement of the hadronic form factors, which characterize the effect of strong interaction in these reactions. The accuracy of such calculations is crucial for the improvement of the test of the standard model in flavor physics. This thesis presents a study of the D{sub s}{sup +} {yields} K{sup +}K{sup -}e{sup +}{nu}{sub e} channel using 214 fb{sup -1} recorded by de BAbar experiment. For events with a K{sup +}K{sup -} mass in the range between 1.01 GeV/c{sup 2} and 1.03 Gev/c{sup 2}, the {phi} {yields} K{sup +}K{sup -} is the dominant component. Using the simple pole model to parameterize the q{sup 2} dependence of the form factors -V(q{sup 2}), A{sub 1}(q{sup 2}) and A{sub 2}(q{sup 2})- the following ratios are measured at q{sup 2} = 0; {tau}{sub V} = V(0)/A{sub 1}(0) = 1.868 {+-} 0.061 {+-} 0.079, r{sub 2} = A{sub 2}(0)/A{sub 1}(0) = 0.763 {+-} 0.072 {+-} 0.062. The mass pole of the axial-vector form factor is also obtained: m{sub A} = (2.30{sub -0.18}{sup +0.42} {+-} 0.21) GeV/c{sup 2}. In the same mass range, the semileptonic branching fraction, relative to the D{sub s}{sup +} {yields} {phi}{pi}{sup +} channel, is measured, and the absolute normalization of the axial-vector form factor is extracted: A{sub 1}(q{sup 2} = 0) and = 0.605 {+-} 0.012 {+-} 0.018 {+-} 0.018. The stated errors refer to the statistical, systematic and errors from external inputs, respectively. An S wave component in the K{sup +}K{sup -} system, possibly originating from a f{sub 0}, is also studied through its interference with the {phi}. An S wave component is observed for the first time in this decay channel with a 5{sigma} significance
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom