Scoping study of SNM detection and indentification for adjunct on-site treaty monitoring. Final report
Author(s) -
William S. Murray,
R.E. Morgado,
C. M. Frankle
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/93553
Subject(s) - nuclear decommissioning , treaty , flexibility (engineering) , vulnerability (computing) , negotiation , computer security , nuclear weapon , computer science , risk analysis (engineering) , systems engineering , engineering , business , political science , law , statistics , mathematics , waste management
Following the fall of the Soviet Union, political pressure to negotiate meaningful nuclear arms agreements with Russia and the former soviet republics has increased. Anticipating the monitoring requirements of a future treaty for the decommissioning and disassembly of nuclear warheads presents opportunities to review existing monitoring technologies and to explore new methods to detect and analyze intrinsic radiation. Fully instrumented radiation-detection systems with a range of monitoring capabilities are available, but special-purpose instruments will still need to be developed to match increasing demands for high-confidence, low-intrusion monitoring in a specific scenario. As a guide to present capabilities in monitoring technologies, we have categorized their relevant attributes to detect and identify special nuclear material based on levels of confidence, intrusiveness, vulnerability, and other critical concerns. To add additional flexibility, we review emerging technologies and estimate the development time to bring them to operational status
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom