Calculational Study on the Compounds Np3M, Am3M, and on the System Pu-Am
Author(s) -
Andrey Kutepov
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/928194
Subject(s) - plutonium , actinide , magnetism , americium , spin (aerodynamics) , magnetic moment , electronic structure , alloy , atomic physics , chemistry , condensed matter physics , nuclear physics , materials science , physics , metallurgy , thermodynamics
Spin-polarized relativistic density functional theory has been employed for the study of the electronic and magnetic structures for the compounds Np{sub 3}M and Am{sub 3}M (M = Al; Ga; In) and their comparison with plutonium's alloys Pu{sub 3}M has been made. It has been found that of the three actinides (Np, Pu, Am) only plutonium has its FCC structure essentially more stable after alloying with aforementioned elements. Apart from that, the electronic and magnetic structures for the system Pu-Am presented by three different compounds: Pu{sub 3}Am, PuAm, and PuAm{sub 3} have been investigated. Their magnetic structures have been found to be too robust in comparison with the experimental fact that magnetism in Pu-Am system depends strongly on the percentage of the americium in the alloy. One possible explanation consists in the overestimation of the spin splitting and in the disregarding of orbital dependence of the exchange-correlation potential
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom