z-logo
open-access-imgOpen Access
Phosphor-Free Solid State Light Sources
Author(s) -
Jeff Nause,
Ian T. Ferguson,
A. Doolittle
Publication year - 2007
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/923031
Subject(s) - materials science , epitaxy , optoelectronics , phosphor , dopant , nitride , light emitting diode , chemical vapor deposition , doping , molecular beam epitaxy , metalorganic vapour phase epitaxy , substrate (aquarium) , diode , nanotechnology , layer (electronics) , oceanography , geology
The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom