z-logo
open-access-imgOpen Access
Simple de Sitter Solutions
Author(s) -
Eva Silverstein,
Phys. Dept. SLAC Stanford U.
Publication year - 2008
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/921617
Subject(s) - de sitter universe , physics , compactification (mathematics) , moduli , string theory , scalar curvature , curvature , mathematical physics , theoretical physics , supersymmetry , scalar (mathematics) , anti de sitter space , pure mathematics , quantum mechanics , geometry , mathematics , universe
We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable dS minima of the potential for moduli obtained from a compactification on a product of two Nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, KK, and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom