z-logo
open-access-imgOpen Access
Improving Paper Machine Efficiency/Productivity through On-line Control
Author(s) -
Cyrus K. Aidun
Publication year - 2007
Language(s) - English
Resource type - Reports
DOI - 10.2172/920308
Subject(s) - mechanical engineering , nozzle , turbulence , engineering , structural engineering , engineering drawing , mechanics , physics
This project involves implementing a new technology, microforming, in a headbox to produce an isotropic sheet with significant reductions in the MD/CD stiffness ratio (increasing CD specific STFI) and improved sheet uniformity. Microforming involves generating axial vorticity (i.e., swirl) prior to the converging nozzle of the headbox by retrofitting an existing tube block with swirl generation devices referred to as Vortigen system. The Vortigen system developed in this project is a retrofit technology to a hydraulic headbox tube block. The tubes in the tube block are re-designed to generate axial vorticity (or swirl) in the tubes. This type of flow results in higher intensity small-scale turbulence in the forming jet at the slice. The net effect, as demonstrated in pilot and commercial trials, is improvement in formation and surface smoothness, lower MD/CD tensile ratio, and consequently, higher CD strength properties such as CD STFI, Ring Crush and tensile or breaking length. The objective of this project is to implement microforming by developing the retrofit technology for generation and on-line control of axial vorticity in the tubes to optimize turbulent scale and intensity, and consequently, fiber network structure properties in the sheet. This technology results in significant improvements in the performance and capital effectiveness of the paper machine (PM) for a fraction of the cost to replace a headbox. In this project we have developed and demonstrated the concept of generating axial vorticity to control the fiber orientation in the converging zone of the headbox, and to produce a sheet with isotropic fiber orientation. The technology developed here has been demonstrated in static form on several pilot trials and two series of commercial trials. The economic feasibility of this technology is based primarily on fiber savings in cases where a more isotropic fiber orientation can be used to reduce the basis weight of the product. Even a 5% decrease in basis weight will results in substantial savings covering the cost of a commercial retrofit in 6 months or less in a medium size machine. The project also resulted in significant amount of information on fiber orientation in turbulent flow and in a converging nozzle where the results can be used in other applications, such as formation of composite materials. Several MS and Ph.D. students and postdoctoral associates have been trained as part of this project

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here