z-logo
open-access-imgOpen Access
Atmospheric transport of neutrons and gamma rays from a high-altitude nuclear detonation
Author(s) -
R.C. Byrd
Publication year - 1995
Language(s) - English
Resource type - Reports
DOI - 10.2172/91945
Subject(s) - physics , neutron , gamma ray , scattering , nuclear physics , computational physics , photon , optics
Although radiation outputs from nuclear detonations in free space are well established, few studies exist of effect of atmospheric transport on the resulting intensity, energy, and time signatures. This report presents calculations for generic sources at high altitudes, 20-50 km above the Earth`s surface, in an atmosphere whose density decreases almost exponentially with height. The sources are instantaneous time bursts with simple energy dependences: gamma rays use an evaporation spectrum; neutrons use either a Gaussian fusion or a Maxwell fission spectrum. The observation angles vary from vertical to 5{degrees} below the horizon, and detectors are placed in either geosynchronous or low Earth orbits (100 km). All calculations use the Monte Carlo N-Particle (MCNP) transport code in either its photon, neutron, or coupled neutron-photon modes, with the coupled mode being applied to the production of gamma rays by neutron inelastic scattering. The standard MCNP outputs are analyzed to extract the intensity, energy, and time dependences of the fluence as functions of either source altitude or observation angle. In general, the intensities drop rapidly below about 30-km source altitude or +5` slant angle. Above these limits, the gamma-ray signal loses substantial intensity but still contains most of the original source information. In contrast, neutron scattering produces little or no decrease in intensity, but it rapidly degrades much of the information about the original source spectrum. Finally, although there is abundant gamma-ray production from neutron inelastic scattering, the resulting signatures appear to provide little additional information

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here