z-logo
open-access-imgOpen Access
Markov sequential pattern recognition : dependency and the unknown class.
Author(s) -
Kevin Malone,
Greg B. Haschke,
Mark Koch
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/919134
Subject(s) - sequential probability ratio test , dependency (uml) , markov chain , class (philosophy) , pattern recognition (psychology) , markov process , set (abstract data type) , computer science , hidden markov model , markov model , artificial intelligence , mathematics , machine learning , algorithm , statistics , programming language
The sequential probability ratio test (SPRT) minimizes the expected number of observations to a decision and can solve problems in sequential pattern recognition. Some problems have dependencies between the observations, and Markov chains can model dependencies where the state occupancy probability is geometric. For a non-geometric process we show how to use the effective amount of independent information to modify the decision process, so that we can account for the remaining dependencies. Along with dependencies between observations, a successful system needs to handle the unknown class in unconstrained environments. For example, in an acoustic pattern recognition problem any sound source not belonging to the target set is in the unknown class. We show how to incorporate goodness of fit (GOF) classifiers into the Markov SPRT, and determine the worse case nontarget model. We also develop a multiclass Markov SPRT using the GOF concept

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom