The Effect of Magnetic Field on HTS Leads What Happens when thePower Fails at RAL?
Author(s) -
Michael A. Green
Publication year - 2007
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/918494
Subject(s) - magnet , superconducting magnet , condensed matter physics , materials science , nuclear engineering , magnetic field , superconductivity , shielded cable , coupling (piping) , high temperature superconductivity , quenching (fluorescence) , power (physics) , electrical engineering , physics , nuclear magnetic resonance , engineering , thermodynamics , composite material , optics , quantum mechanics , fluorescence
The key to being able to operate the MICE superconducting solenoids on small coolers is the use of high temperature superconducting (HTS) leads between the first stage of the cooler and the magnet, which operates at around 4.2 K. Because MICE magnets are not shielded, all of the MICE magnets have a stray magnetic field in the region where the coolers and the HTS leads are located. The behavior of the HTS leads in a magnetic field depends strongly on the HTS material used for the leads and the temperature of the cooler first stage temperature. The HTS leads can be specified to operate at the maximum current for the magnet. This report shows how the HTS leads can be specified for use the MICE magnets. MICE magnets take from 1.3 hours (the tracker solenoids) to 3.7 hours (the coupling magnet) to charge to the highest projected operating currents. If the power fails, the cooler and the upper ends of the HTS leads warm up. The question is how one can discharge the magnet to protect the HTS leads without quenching the MICE magnets. This report describes a method that one can use to protect the HTS leads in the event of a power failure at the Rutherford Appleton Laboratory (RAL)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom