Estimation of fatigue and extreme load distributions from limited data with application to wind energy systems.
Author(s) -
LeRoy Fitzwater
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/918211
Subject(s) - turbine , wind power , extreme value theory , joint probability distribution , wind speed , environmental science , probability distribution , wind engineering , process (computing) , marine engineering , computer science , meteorology , structural engineering , statistics , engineering , mathematics , geography , aerospace engineering , operating system , electrical engineering
An estimate of the distribution of fatigue ranges or extreme loads for wind turbines may be obtained by separating the problem into two uncoupled parts, (1) a turbine specific portion, independent of the site and (2) a site-specific description of environmental variables. We consider contextually appropriate probability models to describe the turbine specific response for extreme loads or fatigue. The site-specific portion is described by a joint probability distribution of a vector of environmental variables, which characterize the wind process at the hub-height of the wind turbine. Several approaches are considered for combining the two portions to obtain an estimate of the extreme load, e.g., 50-year loads or fatigue damage. We assess the efficacy of these models to obtain accurate estimates, including various levels of epistemic uncertainty, of the turbine response
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom