Sweet Spot Supersymmetry
Author(s) -
Masahiro Ibe,
Ryuichiro Kitano
Publication year - 2007
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/908567
Subject(s) - gravitino , physics , particle physics , supersymmetry , higgs boson , minimal supersymmetric standard model , lightest supersymmetric particle , lepton , dark matter , supergravity , nuclear physics , electron
We find that there is no supersymmetric flavor/CP problem, {mu}-problem, cosmological moduli/gravitino problem or dimension four/five proton decay problem in a class of supersymmetric theories with O(1) GeV gravitino mass. The cosmic abundance of the nonthermally produced gravitinos naturally explains the dark matter component of the universe. A mild hierarchy between the mass scale of supersymmetric particles and electroweak scale is predicted, consistent with the null result of a search for the Higgs boson at the LEP-II experiments. A relation to the strong CP problem is addressed. We propose a parametrization of the model for the purpose of collider studies. The scalar tau lepton is the next to lightest supersymmetric particle in a theoretically favored region of the parameter space. The lifetime of the scalar tau is of O(1000) seconds with which it is regarded as a charged stable particle in collider experiments. We discuss characteristic signatures and a strategy for confirmation of this class of theories at the LHC experiments
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom