z-logo
open-access-imgOpen Access
PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE
Author(s) -
Rongwei Yang,
R.Q. Long
Publication year - 1999
Language(s) - English
Resource type - Reports
DOI - 10.2172/9038
Subject(s) - catalysis , chemistry , molecular sieve , selective catalytic reduction , isocyanate , propylene oxide , inorganic chemistry , oxygen , medicinal chemistry , organic chemistry , polymer , ethylene oxide , copolymer , polyurethane
In the last annual reports, we reported Cu-exchanged pillared clays as superior selective catalytic reduction (SCR) catalysts. During the past year we explored the possibilities with MCM-41, a new class of molecular sieve. In this report, Rh exchanged Al-MCM-41 is studied for the SCR of NO by C{sub 3}H{sub 6} in the presence of excess oxygen. It shows a high activity in converting NO to N{sub 2} and N{sub 2}O at low temperatures. In situ FT-IR studies indicate that Rh-NO{sup +} species (1910-1898 cm{sup {minus}1}) is formed on the Rh-Al-MCM-41 catalyst in flowing NO/He, NO+O{sub 2}/He and NO+C{sub 3}H{sub 6}+O{sub 2}/He at 100-350 C. This species is quite active in reacting with propylene and/or propylene adspecies (e.g., {pi}-C{sub 3}H{sub 5}, polyene, etc.) at 250 C in the presence/absence of oxygen, leading to the formation of the isocyanate species (Rh-NCO, at 2174 cm{sup {minus}1}), CO and CO{sub 2}. Rh-NCO is also detected under reaction conditions. A possible reaction pathway for reduction of NO by C{sub 3}H{sub 6} is proposed. In the SCR reaction, Rh-NO{sup +} and propylene adspecies react to generate the Rh-NCO species, then Rh-NCO reacts with O{sub 2}, NO and NO{sub 2} to produce N{sub 2}, N{sub 2}O and CO{sub 2}. Rh-NO{sup +} and Rh-NCO species are two main intermediates for the SCR reaction on Rh-Al-MCM-41 catalyst

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here