z-logo
open-access-imgOpen Access
Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster
Author(s) -
Fisch Nathaniel J Smirnov Artem Raitses Yevgeny
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/899585
Subject(s) - electron , physics , plasma , ion , atomic physics , omega , flux (metallurgy) , electron transport chain , collision frequency , electron density , field (mathematics) , chemistry , nuclear physics , quantum mechanics , mathematics , biochemistry , pure mathematics , organic chemistry
Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency {nu}{sub b} has to be on the order of the Bohm value, {nu}{sub B} {approx} {omega}{sub c}/16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10{sup -5} Torr) in the vacuum tank appear to be different from those at higher pressure ({approx} 10{sup -4} Torr)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom