z-logo
open-access-imgOpen Access
Combustion Turbine (CT) Hot Section Coating Life Management
Author(s) -
R Viswanathan,
D Gandy,
K Krzywosz,
S Cheruvu,
E Wan
Publication year - 2004
Language(s) - English
Resource type - Reports
DOI - 10.2172/897808
Subject(s) - task (project management) , reliability (semiconductor) , computer science , combustion , reliability engineering , coating , field (mathematics) , mechanical engineering , process engineering , forensic engineering , environmental science , engineering , systems engineering , materials science , chemistry , mathematics , power (physics) , physics , organic chemistry , quantum mechanics , pure mathematics , composite material
The integrity of coatings used in hot section components of combustion turbines is crucial to the reliability of the buckets. This project was initiated in recognition of the need for predicting the life of coatings analytically, and non-destructively; correspondingly, three principal tasks were established. Task 1, with the objective of analytically developing stress, strain and temperature distributions in the bucket and thereby predicting thermal fatigue (TMF) damage for various operating conditions; Task 2 with the objective of developing eddy current techniques to measure both TMF damage and general degradation of coatings and, Task 3 with the objective of developing mechanism based algorithms. Task 4 would be aimed at verifying analytical predictions from Task 1 and the NDE predictions from Task 3 against field observations. Task 5 would develop a risk-based decision analysis model to make run/repair decisions. This report is a record of the progress to date on these four tasks

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here