z-logo
open-access-imgOpen Access
Multiphase Flow in Complex Fracture Apertures under a Wide Range of Flow Conditions
Author(s) -
Daniel H. Rothman
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/896229
Subject(s) - contact angle , lattice boltzmann methods , wetting , multiphase flow , mechanics , surface tension , statics , capillary action , flow (mathematics) , work (physics) , scaling , slip (aerodynamics) , capillary number , viscosity , materials science , mechanical engineering , physics , classical mechanics , engineering , geometry , thermodynamics , mathematics , composite material
A better understanding of multiphase flow through fractures requires knowledge of the detailed physics of interfacial flows at the microscopic pore scale. The objective of our project was to develop tools for the simulation of such phenomena. Complementary work was performed by a group led by Dr.~Paul Meakin of the Idaho National Engineering and Environmental Laboratory. Our focus was on the lattice-Boltzmann (LB) method. In particular, we studied both the statics and dynamics of contact lines where two fluids (wetting and non-wetting) meet solid boundaries. Previous work had noted deficiencies in the way LB methods simulate such interfaces. Our work resulted in significant algorithmic improvements that alleviated these deficiencies. As a result, we were able to study in detail the behavior of the dynamic contact angle in flow through capillary tubes. Our simulations revealed that our LB method reproduces the correct scaling of the dynamic contact angle with respect to velocity, viscosity, and surface tension, without specification of an artificial slip length. Further study allowed us to identify the microscopic origin of the dynamic contact angle in LB methods. These results serve to delineate the range of applicability of multiphase LB methods to flows through complex geometries

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom