z-logo
open-access-imgOpen Access
Biotransformation of PuEDTA: Implications to Pu Immobilization
Author(s) -
Jr. Bolton Harvey
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/895876
Subject(s) - chemistry , shewanella oneidensis , anaerobic exercise , nuclear chemistry , metal , kinetics , redox , anaerobic respiration , anoxic waters , inorganic chemistry , environmental chemistry , bacteria , organic chemistry , physiology , genetics , physics , quantum mechanics , biology
This project integrates three distinct goals to develop a fundamental understanding of the potential fate and disposition of plutonium in sediments that are co-contaminated with EDTA. The three objectives are: (1) Develop thermodynamic data for Pu-EDTA species and determine the dominant mobile form of Pu under anaerobic conditions. (2) Elucidate the mechanism and rates of Pu(IV) and Pu(IV)-EDTA reduction by metal-reducing bacteria and determine where the Pu is located (in solution, biosorbed, bioaccumulated). (3) Enrich and isolate anaerobic EDTA-degrading microorganisms to investigate the anaerobic biodegradation of Pu-EDTA

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom