z-logo
open-access-imgOpen Access
Biodegradation of PuEDTA and Impacts on Pu Mobility
Author(s) -
Luying Xun,
Harvey Bolton Jr.
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/893863
Subject(s) - chemistry , chelation , biodegradation , escherichia coli , enzyme , bioremediation , biochemistry , degradation (telecommunications) , gene , bacteria , nuclear chemistry , environmental chemistry , inorganic chemistry , organic chemistry , biology , genetics , telecommunications , computer science
This project, by Dr. Xun, supports work at PNNL (Bolton) regarding plutonium mobility in the subsurface. Ethylenediaminetetraacetate (EDTA) is a chelating agent that can increase the mobility of radionuclides and heavy metals in groundwater. Biodegradation of EDTA can decrease the enhanced mobility. The overall objective is to understand how microbial degradation affects Plutonium-EDTA transport in the environment and the specific objective of this component is to understand how microorganisms degrade EDTA. A chelating degrading bacterium BNC1 can use EDTA and nitrilotriacetate (NTA) as sole carbon and nitrogen sources. A gene cluster responsible for both EDTA and NTA degradation has been cloned and characterized (1,2). The same enzymes are used to degrade both compounds except that additional enzymes are required for EDTA degradation. Since the enzymes are located inside cells, EDTA and NTA must be transported into cells for degradation. For the first funding year, we have focused on how EDTA and NTA are transported into BNC1 cells. The EDTA-degrading gene cluster also contains genes encoding a hypothetical ABC-type transporter. We first demonstrated that the transporter genes and EDTA monooxygenase gene (emoA) were co-transcribed by RT-PCR, suggesting that the genes are involved in EDTA transport. We then characterized one of the gene product EppA. Using recombinant EppA purified from Escherichia coli, we have shown that EppA binds several metal:EDTA complexes by fluorescence techniques. In addition, EppA is shown to bind Mg:NTA, Ca:NTA and Fe(III):NTA but not free NTA

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom