z-logo
open-access-imgOpen Access
Coupled Multi-Electrode Investigation of Crevice Corrosion of 316 Stainless Steel and NiCrMo Alloy 625
Author(s) -
F. Bocher,
Francisco PresuelMoreno,
John R. Scully
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/893841
Subject(s) - crevice corrosion , corrosion , materials science , electrode , metallurgy , anode , polarization (electrochemistry) , electrochemistry , electrolyte , alloy , chemistry
Crevice corrosion is currently mostly studied using either one of two techniques depending on the information desired. The first method involves two multicrevice formers or washers fastened on both sides of a sample plate. This technique provides exposure information regarding the severity of crevice corrosion (depth, position, frequency of attack) but delivers little or no electrochemical information. The second method involves the potentiodynamic or potentiostatic study of an uncreviced sample in a model crevice solution or under a crevice former in aggressive solution where crevice corrosion may initiate and propagate and global current is recorded. However, crevice corrosion initiation and propagation behavior is highly dependent on exact position in the crevice over time. The distance from the crevice mouth will affect the solution composition, the pH, the ohmic potential drop and the true potential in the crevice. Coupled multi-electrode arrays (MEA) were used to study crevice corrosion in order to take in account spatial and temporal evolution of electrochemistry simultaneously. Scaling laws were used to rescale the crevice geometry while keeping the corrosion electrochemical properties equivalent to that of a natural crevice at a smaller length scale. one of the advantages was to be able to use commercial alloys available as wires electrode and, in the case of MEA, to spread the crevice corrosion over many individual electrodes so each one of them will have a near homogeneous electrochemical behavior. The initial step was to obtain anodic polarization curves for the relevant material in acid chloride solution which simulated the crevice electrolyte. using the software Crevicer{trademark}, the potential distribution inside the crevice as a function of the distance from the crevice mouth was determined for various crevice gaps and applied potentials, assuming constant chemistry throughout the crevice. The crevice corrosion initiation location x{sub crit} is the position where the potential drops to E{sub Flade}. Figure 1 illustrates the resulting x{sub crit} vs. G scaling laws for 316 Stainless Steel in 1 M HCl at 50 C. The coupled multi-wire array is composed of one hundred identical 316 Stainless Steel wires in a five by twenty formation inserted in a groove of a 316 Stainless Steel rod such that the ends of the wires are flush mounted with the rod. The 100 wires are coupled electrically through in-line zero resistance ammeters. The diameter of the wires (250 {micro}m) was chosen so that x{sub crit} (critical initiation distance from the crevice mouth) and the expected zone of crevice corrosion (predicted from the scaling law) would be larger than the radius of a single wire. The array created a flush mounted planar electrode with the surface/volume ratio obtained in planar crevices. The observation of the current evolution as a function of position inside and outside the crevice as function of time was made possible as illustrated in Figure 2 in 0.6 M NaCl at 50 C

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom