z-logo
open-access-imgOpen Access
Novel Imaging Techniques, Integrated with Mineralogical, Geochemical and Microbiological Characterization to Determine the Biogeochemical Controls....
Author(s) -
Jonathan R. Lloyd
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/893690
Subject(s) - biogeochemical cycle , environmental chemistry , sulfide , sulfate reducing bacteria , chemistry , microbial metabolism , anaerobic bacteria , sulfate , environmental science , geochemistry , bacteria , geology , paleontology , organic chemistry
Aims and objectives Technetium-99 is a priority pollutant at numerous DOE sites, due to a combination of its long half life (2.1 x 105 years), high mobility as Tc(VII) (TcO4-; pertechnetate anion) in oxic waters, and bioavailability as a sulfate analog. Under anaerobic conditions, however, the radionuclide is far less mobile, forming insoluble Tc(IV) precipitates. As anaerobic microorganisms can reduce soluble Tc(VII) to insoluble Tc(IV), microbial metabolism may have the potential to treat sediments and waters contaminated with Tc. In previous studies we have focused on the fundamental mechanisms of Tc(VII) bioreduction and precipitation, and we have identified direct enzymatic (hydrogenase-mediated) mechanisms, and a range of potentially important indirect transformations catalyzed by biogenic Fe(II), U(IV) or sulfide. These baseline studies have generally used pure cultures of metal-reducing bacteria, in order to develop conceptual models for the biogeochemical cycling of Tc. There is, however, comparatively little known about interactions of metal-reducing bacteria with environmentally relevant trace concentrations of Tc, against a more complex biogeochemical background provided by mixed microbial communities in the subsurface

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom