z-logo
open-access-imgOpen Access
Pleasant Bayou Geopressured-Geothermal Reservoir Analysis - January 1991
Author(s) -
Thane Riney
Publication year - 1991
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/893428
Subject(s) - geothermal gradient , geology , geological survey , geothermal energy , national laboratory , reservoir engineering , petroleum reservoir , reservoir simulation , hydrostatic pressure , petroleum engineering , hydrology (agriculture) , petroleum , engineering , paleontology , geotechnical engineering , physics , engineering physics , thermodynamics
Many sedimentary basins contain formations with pore fluids at pressures higher than hydrostatic value; these formations are called geopressured. The pore pressure is generally well in excess of hydrostatic and the fluids vary in scalinity, temperature, and dissolved methane. As part of its program to define the magnitude and recoverability of the geopressured-geothermal energy resource, the US Department of Energy has drilled and tested deep wells in geopressured formations in the Texas-Louisiana Gulf Coast region. Geological information for the Pleasant Bayou geopressured geothermal resource is most extensive among the reservoirs tested. Earlier testing of the DOE well (Pleasant Bayou Well No.2) was conducted in several phases during 1979-1983. Long-term testing was resumed in May 1988 and is currently in progress. This report summarizes the pertinent field and laboratory test data available through December 31, 1990. A numerical reservoir simulator is employed as a tool for synthesizing and integrating the reservoir information, formation rock and fluid properties data from laboratory tests, well data from the earlier testing (1979-1983), and the ongoing long-term production testing (1988-1990) of Pleasant Bayou Well No.2. A reservoir simulation model has been constructed which provides a detailed match to the well test history to date. This model is constructed within a geologic framework described by the Texas Bureau of Economic Geology and relies heavily on the pressure transient data from the 1980 Reservoir Limits Test in conjunction with the 1988-1990 production testing

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom