z-logo
open-access-imgOpen Access
ANNUAL REPORT FOR ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM PROJECT NUMBER 86598 COUPLED FLOW AND REACTIVITY IN VARIABLY SATURATED POROUS MEDIA
Author(s) -
Carl D. Palmer,
Earl D. Mattson,
Robert W. Smith
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/893223
Subject(s) - vadose zone , environmental science , porous medium , water content , moisture , porosity , soil science , soil water , geotechnical engineering , geology , meteorology , geography
Improved models of contaminant migration in heterogeneous, variably saturated porous media are required to better define the long-term stewardship requirements for U.S. Department of Energy (DOE) lands and to assist in the design of effective vadose-zone barriers to contaminant migrations. The objective of our three-year project is to meet the DOE need by developing new experimental approaches to describe adsorption and transport of contaminants in heterogeneous, variably saturated media (i.e., the vadose zone). The research specifically addresses the behavior of strontium, a high priority DOE contaminant. However, the key benefit of this research is improved conceptual models of how all contaminants migrate through heterogeneous, variably-saturated, porous media. Research activities are driven by the hypothesis that the reactivity of variably saturated porous media is dependent on the moisture content of the medium and can be represented by a relatively simple function applicable over a range of scales, contaminants, and media. A key and novel aspect of our research is the use of the 2-meter radius geocentrifuge capabilities at the Idaho National Laboratory (INL) to conduct unsaturated reactive transport experiments (Figure 1). The experimental approach using the geocentrifuge provides data in a much shorter time period than conventional methods allowing us to complete more experiments and explore a wider range of moisture contents. The vadose zone research being done in this project will demonstrate the utility of environmental geocentrifuge experimental approaches and their applicability to DOE’s vadose research needs

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom