z-logo
open-access-imgOpen Access
Twinning in Laves Phases by Synchroshear: Atomic Mechanisms and Compositional Control. Final report, May 15, 1997 to August 31, 2001
Author(s) -
David E. Luzzi,
D. P. Pope
Publication year - 2003
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/891783
Subject(s) - crystal twinning , laves phase , materials science , intermetallic , phase (matter) , transmission electron microscopy , alloy , flow stress , condensed matter physics , crystallography , metallurgy , microstructure , chemistry , physics , nanotechnology , organic chemistry
Compression tests between 4.2 and 1273 K, compositional variation and conventional transmission electron microscopy were used to investigate the deformation and twinning behavior of C15 HfV{sub 2}+Nb - based Laves phase alloys. We chose two phase C15/bcc alloys to improve the ambient temperature ductility which has not been found in the single phase Laves intermetallic compound. Transmission electron microscopy revealed that substantial mechanical twinning takes place in the C15 Laves phase matrix at room temperature and 77 K. A deep minimum in the flow stress, with a drop of nearly 500 MPa, appears at around 77 K in the C15/bcc two-phase alloy with C15 matrix. Since no such anomaly is seen in the bcc phase, we believe that the cause of this can be attributed to mechanical twinning in the C15 Laves phase. Twin bands observed in the C15 matrix of deformed samples at both 298 K and 77 K can be classified into three categories by their thicknesses; coarse twin bands about 10 nm to several hundreds nm thick, fine twin bands around 3 to 10 nm thick, and ultra fine twin bands with average thickness of 1.5 nm. A high density of ultra-fine twin bands is the characteristic feature of twinning in the C15 matrix. They belong to the <112>(111) twinning system and commonly intersect with each other

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom