Improved InGaN epitaxy yield by precise temperature measurement :yearly report 1.
Author(s) -
Daniel Koleske,
J. R. Creighton,
Michael Russell,
Arthur Fischer
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/891367
Subject(s) - pyrometer , opacity , emissivity , metalorganic vapour phase epitaxy , sapphire , optoelectronics , materials science , light emitting diode , yield (engineering) , wafer , optics , epitaxy , laser , temperature measurement , physics , nanotechnology , composite material , layer (electronics) , quantum mechanics
This Report summarizes the first year progress (October 1, 2004 to September 30, 2005) made under a NETL funded project entitled ''Improved InGaN Epitaxy Yield by Precise Temperature Measurement''. This Project addresses the production of efficient green LEDs, which are currently the least efficient of the primary colors. The Project Goals are to advance IR and UV-violet pyrometry to include real time corrections for surface emissivity on multiwafer MOCVD reactors. Increasing wafer yield would dramatically reduce high brightness LED costs and accelerate the commercial manufacture of inexpensive white light LEDs with very high color quality. This work draws upon and extends our previous research (funded by DOE) that developed emissivity correcting pyrometers (ECP) based on the high-temperature GaN opacity near 400 nm (the ultraviolet-violet range, or UVV), and the sapphire opacity in the mid-IR (MIR) near 7.5 microns
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom