z-logo
open-access-imgOpen Access
Microstructure and Mechanical Instability of Water-Quenched U-6wt% Nb Alloy Affected by Long-Term Aging
Author(s) -
L Hsiung,
Jianxin Zhou
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/889977
Subject(s) - indentation hardness , alloy , materials science , microstructure , isothermal process , spinodal decomposition , softening , ultimate tensile strength , instability , hardening (computing) , composite material , metallurgy , phase (matter) , layer (electronics) , chemistry , thermodynamics , physics , organic chemistry , mechanics
A combinative approach of microhardness testing, tensile testing, and TEM microstructural analysis was employed to study the microstructure and mechanical instability of a water-quenched U-6wt.% Nb (WQ-U6Nb) alloy subjected to different aging schedules including artificial aging at 200 C, 15-year natural aging at ambient temperatures, and 15-year natural aging followed by accelerative aging at 200 C. The changes in mechanical property during and after the aging processes were examined using microhardness and tensile-testing methods. During the early stages of artificial aging at 200 C, the microhardness of WQ-U6Nb alloy increased, i.e., age hardening, as a result of the development of nanoscale modulation caused by spinodal decomposition. Coarsening of the modulated structure occurred after a prolonged aging at 200 C for 16 hours, and it led to a decrease of microhardness, i.e., age softening. Phase instability was also found to occur in WQ-U6Nb alloy that was subjected to a 15-year natural aging at ambient temperatures. The formation of partially ordered domains resulting from a spinodal modulation with an atomic-scale wavelength rendered the appearance of swirl-shape antiphase domain boundaries (APBs) observed in TEM images. Although it did not cause a significant change in microhardness, 15-year natural aging has dramatically affected the aging mechanisms of the alloy isothermally aged at 200 C. Microhardness values of the NA alloy continuously increased and no age softening was found after isothermal aging at 200 C for 96 hours as a result of the phase decomposition of partially ordered domains into Nb-depleted {alpha} phase and Nb-enriched U{sub 3}Nb ordered phase in the alloy. It is concluded that the long-term natural aging changes the transformation pathway of WQ-U6Nb, and it leads to order-disorder transformation, precipitation hardening, and ductility embrittlement of WQ-U6Nb alloy

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom