Exploration of R<sub>2</sub>XM<sub>2</sub> (R=Sc, Y, Ti, Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge): Structural Motifs, the novel Compound Gd<sub>2</sub>AlGe<sub>2</sub> and Analysis of the U<sub>3</sub>Si<sub>2</sub> and Zr<sub>3</sub>Al<sub>2 </sub>Structure Types
Author(s) -
Sean William McWhorter
Publication year - 2006
Language(s) - English
Resource type - Reports
DOI - 10.2172/888949
Subject(s) - crystal structure , magnetic refrigeration , crystallography , materials science , crystal (programming language) , transition metal , main group element , rare earth , lanthanide , group (periodic table) , chemistry , metallurgy , magnetization , physics , magnetic field , ion , biochemistry , organic chemistry , quantum mechanics , computer science , programming language , catalysis
In the process of exploring and understanding the influence of crystal structure on the system of compounds with the composition Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} several new compounds were synthesized with different crystal structures, but similar structural features. In Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, the main feature of interest is the magnetocaloric effect (MCE), which allows the material to be useful in magnetic refrigeration applications. The MCE is based on the magnetic interactions of the Gd atoms in the crystal structure, which varies with x (the amount of Si in the compound). The crystal structure of Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} can be thought of as being formed from two 3{sup 2}434 nets of Gd atoms, with additional Gd atoms in the cubic voids and Si/Ge atoms in the trigonal prismatic voids. Attempts were made to substitute nonmagnetic atoms for magnetic Gd using In, Mg and Al. Gd{sub 2}MgGe{sub 2} and Gd{sub 2}InGe{sub 2} both possess the same 3{sup 2}434 nets of Gd atoms as Gd{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4}, but these nets are connected differently, forming the Mo{sub 2}FeB{sub 2} crystal structure. A search of the literature revealed that compounds with the composition R{sub 2}XM{sub 2} (R=Sc, Y, Ti, more » Zr, Hf, rare earth; X=main group element; M=transition metal, Si, Ge) crystallize in one of four crystal structures: the Mo{sub 2}FeB{sub 2}, Zr{sub 3}Al{sub 2}, Mn{sub 2}AlB{sub 2} and W{sub 2}CoB{sub 2} crystal structures. These crystal structures are described, and the relationships between them are highlighted. Gd{sub 2}AlGe{sub 2} forms an entirely new crystal structure, and the details of its synthesis and characterization are given. Electronic structure calculations are performed to understand the nature of bonding in this compound and how electrons can be accounted for. A series of electronic structure calculations were performed on models with the U{sub 3}Si{sub 2} and Zr{sub 3}Al{sub 2} structures, using Zr and A1 as the building blocks. The starting point for these models was the U{sub 3}Si{sub 2} structure, and models were created to simulate the transition from the idealized U{sub 3}Si{sub 2} structure to the distorted Zr{sub 3}Al{sub 2} structure. Analysis of the band structures of the models has shown that the transition from the U{sub 3}Si{sub 2} structure to the Zr{sub 3}Al{sub 2} structure lifts degeneracies along the {Lambda} {yields} Z direction, indicating a Peierls-type mechanism for the displacement occurring in the positions of the Zr atoms. « less
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom