z-logo
open-access-imgOpen Access
Acoustic Monitor for Liquid-Solid Slurries Measurements at Low Weight Fractions
Author(s) -
Lawrence L. Taviarides
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/885049
Subject(s) - slurry , attenuation , work (physics) , suspended solids , process engineering , materials science , environmental science , waste management , acoustic attenuation , engineering , mechanical engineering , environmental engineering , physics , wastewater , optics
Our effort in this project is to develop an acoustic monitor for accurate, real-time characterization of the size and weight fractions of solids in slurries for process monitoring and to determine the optimal timing for slurry transfers. This capability will be valuable in the Savannah River Site accelerated clean-up program. Our scientific work during the first research period developed a theory, supported by experiments, to describe sound attenuation of solids in suspensions in the presence of bubbles, which permits us to determine the solid-liquid weight percent. Engineering developments during the second research period led to the design, construction, and demonstration, in our laboratories, of the Syracuse Acoustic Monitor (SAM) system that measures weight percent solids accurately in slurries of 0.5 to 8.0 weight percent on-line and in real-time. Also, we had shown the potential for these measurements in solid-gas-liquid slurries by removing the interference due to the presence of gas bubbles

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom