z-logo
open-access-imgOpen Access
Transport, Targeting and Applications of Functional Nanoparticles for Degradation of Chlorinated Organic Solvents
Author(s) -
Gregory V. Lowry
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/885040
Subject(s) - environmental remediation , pollutant , groundwater , groundwater remediation , contamination , pollution , environmental science , environmental chemistry , groundwater pollution , human decontamination , water pollution , environmental engineering , waste management , chemistry , aquifer , geology , geotechnical engineering , engineering , ecology , organic chemistry , biology
This project addresses the need for methods to remove or degrade subsurface contaminants that are present as dense non-aqueous phase liquids (DNAPLs), and act as long-term sources of groundwater contamination. The goal is to build on a particle-based approach to subsurface contaminant remediation that is based partly on the recent success in using nanoiron to degrade chlorinated compounds dissolved in groundwater, and knowledge of how colloids migrate in porous media. The objective is to engineer reactive nanoparticles that can decompose and potentially isolate DNAPL pollutants in the subsurface. Delivering reactive particles directly to the surface of the DNAPL will decompose the pollutant into benign materials, reduce the migration of pollutant during treatment, possibly lead to encapsulation of the DNAPL, and reduce the time needed to remove residual pollution by other means, such as natural attenuation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom