z-logo
open-access-imgOpen Access
FY05 LDRD Final ReportNanomaterials for Radiation Detection
Author(s) -
T Wang,
Sonia E. Létant,
Rebecca J. Nikolić,
C Chueng
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/883614
Subject(s) - radiation , nanoporous , radiation hardening , nanomaterials , materials science , scintillation , optoelectronics , nanotechnology , semiconductor , quantum dot , optics , physics , detector
We have demonstrated that it is possible to enhance current radiation detection capability by manipulating the materials at the nano level. Fabrication of three-dimensional (3-D) nanomaterial composite for radiation detection has great potential benefits over current semiconductor- and scintillation-based technologies because of the precise control of material-radiation interaction and modulation of signal output. It is also a significant leap beyond current 2-D nanotechnology. Moreover, since we are building the materials using a combination of top-down and bottom-up approaches, this strategy to make radiation detection materials can provide significant improvement to radiation-detection technologies, which are currently based on difficult-to-control bulk crystal growth techniques. We are applying this strategy to tackle two important areas in radiation detection: gamma-rays and neutrons. In gamma-ray detection, our first goal is to employ nanomaterials in the form of quantum-dot-based mixed matrices or nanoporous semiconductors to achieve scintillation output several times over that from NaI(Tl) crystals. In neutron detection, we are constructing a 3-D structure using a doped nanowire ''forest'' supported by a boron matrix and evaluating the detection efficiency of different device geometry with simulation

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom