In-Situ Cleaning of Metal Cathodes using a Hydrogen Ion Beam
Author(s) -
D.H. Dowell,
F. K. King,
R. E. Kirby,
J. Schmerge
Publication year - 2006
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/878343
Subject(s) - cathode , work function , laser , materials science , ion , wavelength , beam (structure) , ion beam , optoelectronics , hydrogen , copper , range (aeronautics) , optics , metal , analytical chemistry (journal) , chemistry , physics , metallurgy , composite material , organic chemistry , chromatography
Metal photocathodes are commonly used in high-field RF guns because they are robust, straightforward to implement and tolerate relatively poor vacuum compared to semi-conductor cathodes. However these cathodes have low quantum efficiency (QE) even at UV wavelengths, and still require some form of cleaning after installation in the gun. A commonly used process for improving the QE is laser cleaning. In this technique the UV drive laser is focused to a small diameter close to the metal's damage threshold and then moved across the surface to remove contaminants. This method does improve the QE, but can produce non-uniform emission and potentially damage the cathode. Ideally an alternative process which produces an atomically clean, but unaltered surface is needed. In this paper we explore using a hydrogen ion (H-ion) beam to clean a copper cathode. We describe QE measurements over the wavelength range of interest as a function of integrated exposure to an H-ion beam. We also describe the data analysis to obtain the work function and derive a formula of the QE for metal cathodes. Our measured work function for the cleaned sample is in good agreement with published values, and the theoretical QE as a function of photon wavelength is in excellent agreement with the cleaned copper experimental results. Finally, we propose an in-situ installation of an H-ion gun compatible with existing s-band RF guns
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom