Development of Radiation-Hardening Ceramic Composites for Fusion Applications
Author(s) -
Don Steiner
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/878337
Subject(s) - oak ridge national laboratory , materials science , ceramic , ceramic matrix composite , composite number , composite material , creep , fusion power , pyrolysis , fusion , irradiation , nuclear engineering , silicon carbide , nuclear physics , waste management , engineering , linguistics , philosophy , physics , plasma
This Progress Report describes work performed as a collaborative effort between Rensselaer Polytechnic Institute (RPI) and Oak Ridge National Laboratory (ORNL). This research is focused in four areas considered to be critical issues for using SiC fiber-reinforced SiC matrix composites (SiC/SiC) as structural materials in a fusion environment: (1) Calculation of the critical dose and temperature for amorphization of SiC by using the TRIM computer code to analyze ORNL and literature data; (2) Measurement of irradiation-induced creep in monolithic SiC or stoichiometric SiC fibers; (3) Determining the effects of high-temperature irradiation on monolithic SiC as part of ORNL's METS experiment; and (4) Gauging the effectiveness of polymer impregnation pyrolysis in improving SiC/SiC composite hermicity. Progress in each area is described, as well as plans for next year
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom