ISOBUTANOL FROM SYNGAS IN A THREE PHASE SYSTEM
Author(s) -
Peter J. Tijrn
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/875781
Subject(s) - isobutanol , syngas , chemistry , catalysis , oxygenate , methanol , octane , chemical engineering , exothermic reaction , octane rating , organic chemistry , engineering
With growing interest in oxygenates as octane booster for automotive fuels, various synthesis routes for these chemicals are being investigated. Among others, alternative routes to isobutene, the C4-components in MTBE-synthesis are under investigation. A promising path to isobutene is the heterogeneously catalyzed CO-hydrogenation to isobutanol with following dehydration (Fig. 1). As shown by thermodynamical studies, the heterogeneously catalyzed CO-hydrogenation to isobutanol is not expected to experience any thermodynamic constraints. However, heterogeneous hydrogenation of CO is a very exothermic process, a problem which can only be partly solved when being conducted in a plug flow reactor. When carried out in reaction vessels with moving catalyst bed (e.g. three phase stirred tank), heat transfer problems can be resolved, along with additional benefits connected with this reactor type. Several heterogeneous catalytic systems have been under investigation for their capability of isobutanol synthesis from syngas. Most promising catalysts for an active and selective isobutanol synthesis from CO are modified high temperature methanol catalysts
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom