Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research. Part 2: Atmospheric and climate research
Publication year - 1995
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/87017
Subject(s) - environmental science , atmospheric research , meteorology , radiative transfer , gcm transcription factors , atmosphere (unit) , climatology , climate model , atmospheric circulation , general circulation model , radiative flux , divergence (linguistics) , atmospheric sciences , scale (ratio) , climate change , geography , geology , physics , linguistics , oceanography , philosophy , cartography , quantum mechanics
Atmospheric research at Pacific Northwest Laboratory (PNL) occurs in conjunction with the Atmospheric Chemistry Program (ACP) and with the Atmospheric Studies in Complex Terrain (ASCOT) Program. Solicitations for proposals and peer review were used to select research projects for funding in FY 1995. Nearly all ongoing projects were brought to a close in FY 1994. Therefore, the articles in this volume include a summary of the long-term accomplishments as well as the FY 1994 progress made on these projects. The following articles present summaries of the progress in FY 1994 under these research tasks: continental and oceanic fate of pollutants; research aircraft operations; ASCOT program management; coupling/decoupling of synoptic and valley circulations; interactions between surface exchange processes and atmospheric circulations; and direct simulations of atmospheric turbulence. Climate change research at PNL is aimed at reducing uncertainties in the fundamental processes that control climate systems that currently prevent accurate predictions of climate change and its effects. PNL is responsible for coordinating and integrating the field and laboratory measurement programs, modeling studies, and data analysis activities of the Atmospheric Radiation Measurements (ARM) program. In FY 1994, PNL scientists conducted 3 research projects under the ARM program. In the first project, the sensitivity of GCM grid-ad meteorological properties to subgrid-scale variations in surface fluxes and subgrid-scale circulation patterns is being tested in a single column model. In the second project, a new and computationally efficient scheme has been developed for parameterizing stratus cloud microphysics in general circulation models. In the last project, a balloon-borne instrument package is being developed for making research-quality measurements of radiative flux divergence profiles in the lowest 1,500 meters of the Earth`s atmosphere
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom