z-logo
open-access-imgOpen Access
Long-term testing
Author(s) -
Mattison K. Ferber,
George Graves
Publication year - 1994
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/86947
Subject(s) - ultimate tensile strength , creep , ceramic , gas turbines , materials science , flexural strength , stress (linguistics) , structural material , structural engineering , composite material , mechanical engineering , environmental science , nuclear engineering , forensic engineering , engineering , linguistics , philosophy
Land-based gas turbines are significantly different from automotive gas turbines in that they are designed to operate for 50,000 h or greater (compared to 5,000--10,000 h). The primary goal of this research is to determine the long-term survivability of ceramic materials for industrial gas turbine applications. Research activities in this program focus on the evaluation of the static tensile creep and stress rupture (SR) behavior of three commercially available structural ceramics which have been identified by the gas turbine manufacturers as leading candidates for use in industrial gas turbines. For each material investigated, a minimum of three temperatures and four stresses will be used to establish the stress and temperature sensitivities of the creep and SR behavior. Because existing data for many candidate structural ceramics are limited to testing times less than 2,000 h, this program will focus on extending these data to times on the order of 10,000 h, which represents the lower limit of operating time anticipated for ceramic blades and vanes in gas turbine engines. A secondary goal of the program will be to investigate the possibility of enhancing life prediction estimates by combining interrupted tensile SR tests and tensile dynamic fatigue tests in which tensile strength is measured as a function of stressing rate. The third goal of this program will be to investigate the effects of water vapor upon the SR behavior of the three structural ceramics chosen for the static tensile studies by measuring the flexural strength as a function of stressing rate at three temperatures

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom