z-logo
open-access-imgOpen Access
RADIATION-INDUCED DECOMPOSITION OF U(VI) ALTERATION PHASES OF UO2
Author(s) -
Satoru Utsunomiya,
Rodney C. Ewing
Publication year - 2005
Language(s) - English
Resource type - Reports
DOI - 10.2172/860242
Subject(s) - uranyl , radiochemistry , analytical chemistry (journal) , selected area diffraction , irradiation , transmission electron microscopy , chemistry , electron diffraction , crystallography , ion , materials science , nuclear chemistry , diffraction , nuclear physics , physics , nanotechnology , organic chemistry , chromatography , optics
U{sup 6+}-phases are common alteration products of spent nuclear fuel under oxidizing conditions, and they may potentially incorporate actinides, such as long-lived {sup 239}Pu and {sup 237}Np, delaying their transport to the biosphere. In order to evaluate the ballistic effects of {alpha}-decay events on the stability of the U{sup 6+}-phases, we report, for the first time, the results of ion beam irradiations (1.0 MeV Kr{sup 2+}) for six different structures of U{sup 6+}-phases: uranophane, kasolite, boltwoodite, saleeite, carnotite, and liebigite. The target uranyl-minerals were characterized by powder X-ray diffraction and identification confirmed by SAED (selected area electron diffraction) in TEM (transmission electron microscopy). The TEM observation revealed no initial contamination of uraninite in these U{sup 6+} phases. All of the samples were irradiated with in situ TEM observation using 1.0 MeV Kr{sup 2+} in the IVEM (intermediate-voltage electron microscope) at the IVEM-Tandem Facility of Argonne National Laboratory. The ion flux was 6.3 x 10{sup 11} ions/cm{sup 2}/sec. The specimen temperatures during irradiation were 298 and 673 K, respectively. The Kr{sup 2+}-irradiation decomposed the U{sup 6+}-phases to nanocrystals of UO{sub 2} at doses as low as 0.006 dpa. The cumulative doses for the pure U{sup 6+}-phases, e.g., uranophane, at 0.1 and 1 million years (m.y.) are calculated to be 0.009 and 0.09 dpa using SRIM2003. However, with the incorporation of 1 wt.% {sup 239}Pu, the calculated doses reach 0.27 and {approx}1.00 dpa in ten thousand and one hundred thousand years, respectively. Under oxidizing conditions, multiple cycles of radiation-induced decomposition to UO{sub 2} followed by alteration to U{sup 6+}-phases should be further investigated to determine the fate of trace elements that may have been incorporated in the U{sup 6+}-phases

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom