z-logo
open-access-imgOpen Access
Interfacial Reduction - Oxidation Mechanisms Governing Fate and Transport of Contaminants in the Vadose Zone
Author(s) -
Baolin Deng
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/850382
Subject(s) - vadose zone , environmental remediation , environmental chemistry , contamination , permeable reactive barrier , sulfide , chemistry , hydrogen sulfide , environmental science , soil water , radionuclide , radioactive waste , uranium , reagent , human decontamination , waste management , nuclear chemistry , soil science , materials science , metallurgy , organic chemistry , ecology , biology , sulfur , physics , quantum mechanics , engineering
Many soil contamination sites at Department of Energy installations contain radionuclides and toxic metals such as technetium (Tc), uranium (U) and chromium (Cr). In Situ Gaseous Reduction (ISGR) using dilute hydrogen sulfide (H2S) as reductant is a technology uniquely suitable for the vadose zone soil remediation to reduce and immobilize these contaminants. It is conceivable that the ISGR approach can be applied either to immobilize pre-existing contaminants or to create a reductive permeable reactive barrier (PRB) through hydrogen sulfide gas treatment of soils for contaminant interception. This project aims to improve our understanding of the complex interactions among the contaminants (U and Tc), H2S, and various soil constituents. The collaborative effort involving the University of Missouri-Columbia, Pacific Northwest National Laboratory, and Illinois Institute of Technology will provide the knowledge needed to further develop and optimize the ISGR technology. Specific research tasks include: (a) examine the reduction kinetics of Tc(VII) and U(VI) by H2S; (b) measure the reduction kinetics of Tc(VII) and U(VI) by iron sulfides; (c) characterize the speciation of immobilized Tc and U and investigate the immobilization mechanisms; (d) assess the long-term stability of the contaminants immobilized by the ISGR treatment; and (e) validate the pure phase experimental results under natural soil conditions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom