z-logo
open-access-imgOpen Access
ENHANCED HYDROGEN PRODUCTION INTEGRATED WITH CO2 SEPARATION IN A SINGLE-STAGE REACTOR
Author(s) -
H.C. Gupta,
Mahesh V. Iyer,
Bartev Sakadjian,
LiangShih Fan
Publication year - 2005
Language(s) - English
Resource type - Reports
DOI - 10.2172/841467
Subject(s) - sorbent , calcination , chemical engineering , diluent , hydrogen production , steam reforming , water gas shift reaction , calcium looping , catalysis , hydrogen , chemistry , mesoporous material , materials science , adsorption , nuclear chemistry , organic chemistry , engineering
Hydrogen production by the water gas shift reaction (WGSR) is equilibrium limited due to thermodynamic constrains. However, this can be overcome by continuously removing the product CO{sub 2}, thereby driving the WGSR in the forward direction to enhance hydrogen production. This project aims at using a high reactivity, mesoporous calcium based sorbent (PCC-CaO) for removing CO{sub 2} using reactive separation scheme. Preliminary results have shown that PCC-CaO dominates in its performance over naturally occurring limestone towards enhanced hydrogen production. However, maintenance of high reactivity of the sorbent over several reaction-regeneration cycles warrants effective regeneration methods. We have identified sub-atmospheric calcination (vacuum) as vital regeneration technique that helps preserve the sorbent morphology. Sub-atmospheric calcination studies reveal the significance of vacuum level, diluent gas flow rate, thermal properties of diluent gas, and sorbent loading on the kinetics of calcination and the morphology of the resultant CaO sorbent. Steam, which can be easily separated from CO{sub 2}, has been envisioned as a potential diluent gas due to its better thermal properties resulting in effective heat transfer. A novel multi-fixed bed reactor was designed which isolates the catalyst bed from the sorbent bed during the calcination step. This should prevent any potential catalyst deactivation due to oxidation by CO{sub 2} during the regeneration phase

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here