Development of a Standard Methodology for the Quantitative Measurement of Steel Phase Transformation Kinetics and Dilation Strains Using Dilatometric Methods, QMST (TRP 0015)
Author(s) -
Manish Metha,
Tom Oakwood
Publication year - 2004
Language(s) - English
Resource type - Reports
DOI - 10.2172/840936
Subject(s) - materials science , original equipment manufacturer , mechanical engineering , manufacturing engineering , computer science , engineering , operating system
The purpose of this collaborative project was to develop a standard practice for obtaining and archiving quantitative steel transformation kinetic data and thermal strain data. Two families of dilatometric equipment were employed to develop this standard practice for testing bar product steels. These include high-speed quenching and deformation dilatometers and Gleeble{reg_sign} thermomechanical simulation instruments. Standard measurement, data interpretation and data reporting methods were developed and defined by the cross-industry QMST Consortium members consisting of steel-manufacturers, forgers, heat-treaters, modelers, automotive and heavy vehicle OEMs along with team expert technologists from the National Labs and academia. The team designed phase transformation experiments on two selected steel grades to validate the standard practices--a medium carbon grade SAE 1050 and an alloy steel SAE 8620. A final standard practice document was developed based on the two dilatometry methods, and was submitted to and approved by ASTM (available as A1033-04). The standard practice specifies a method for measuring austenite transformation under no elastic stress or plastic deformation. These methods will be an enabler for the development and electronic archiving of a quantitative database for process modeling using computer simulation software, and will greatly assist endusers in developing accurate process and product simulations during the thermo-mechanical processing of bar and rod product steels
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom