z-logo
open-access-imgOpen Access
Long-term Monitoring Plan for the Shoal Underground Nuclear Test
Author(s) -
Ahmed M. Hassan
Publication year - 2005
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/839179
Subject(s) - shoal , plan (archaeology) , hydrogeology , boundary (topology) , computer science , environmental science , civil engineering , engineering , geology , geotechnical engineering , paleontology , mathematical analysis , oceanography , mathematics
The flow and transport model of Shoal is used to design a three-well monitoring network to be part of the long-term monitoring network for the site and achieve two objectives: (1) detect the presence of radionuclides in case they migrate to the monitoring well locations, and (2) provide field data to compare with model predictions as part of the model validation process. Using three different quantitative approaches and the numerical groundwater flow and transport model developed for Shoal, three new monitoring well locations were identified from 176 different networks. In addition to the quantitative analyses using the numerical model, the development of the monitoring network for Shoal will also be subject to qualitative hydrogeologic interpretation during implementation. information will only be available during the fieldwork, it will be incorporated in the monitoring well design at the time of well installation. Finally, it should be noted that the CADD-CAP for Shoal, including the compliance boundary, is not yet approved. Should the compliance boundary change from the 1,000-year MCL contaminant boundary, well locations may also need to change. However, the analysis reported here provides a number of alternatives with reasonable detection efficiency

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom