z-logo
open-access-imgOpen Access
INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS
Author(s) -
David S. Schechter
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/835279
Subject(s) - grid , benchmark (surveying) , petroleum engineering , computer science , fracture (geology) , simulation , reservoir simulation , fluid dynamics , work (physics) , flow (mathematics) , geology , environmental science , geotechnical engineering , engineering , mechanics , mechanical engineering , physics , geodesy
This report describes the work performed during the third year of the project, ''Investigating of Efficiency Improvements during CO{sub 2} Injection in Hydraulically and Naturally Fractured Reservoirs.'' The objective of this project is to perform unique laboratory experiments with artificial fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing in HFR and NFR that eventually result in more efficient CO{sub 2} flooding in heterogeneous or fracture-dominated reservoirs. To achieve this objective, in this period we concentrated our effort on modeling fluid flow through rough fractures and investigating the grid orientation effect in rectangular grid blocks particularly at high mobility ratio as our precursor to use a compositional simulator. We are developing a robust simulator using Voronoi grids to accurately represent natural and induced fractures. We are also verifying the accuracy of the simulation using scaled laboratory experiments to provide a benchmark for our simulation technique. No such simulator currently exists so this capability will represent a major breakthrough in simulation of gas injection in fractured systems. The following sections outline the results that appear in this report

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom