THE IMPACT OF TRACE ADDITIVES ON THE APPARENT SOLUBILITY OF HYDROGEN IN HEAVY OIL AND RELATED FEEDSTOCKS AT LOW AND HIGH TEMPERATURES
Author(s) -
Jalal Abedi
Publication year - 2002
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/835238
Subject(s) - solubility , hydrogen , volume (thermodynamics) , analytical chemistry (journal) , chemistry , atmospheric temperature range , tetralin , vapor pressure , thermodynamics , chromatography , organic chemistry , physics , catalysis
A systematic investigation was conducted to provide an accurate determination of hydrogen solubility in liquid media in temperatures in the range of 25-250 C and pressures in the range of 0.5-8 MPa. Results were obtained by an indirect gas solubility measurement method. The method was intended for use with high-resolution camera. The hydrogen solubility measurements were indirect and were based on pressure changes at constant temperature and measured volumes. Since the volume of the view cell was fixed the volume available for the vapor phase could be determined by measuring the location of the liquid-vapor interface. The interface was located to within the height of one pixel using high-resolution camera, which added {+-} 0.4 ml to the uncertainty of the vapor volume. Liquid-liquid interface locations were measured with equal precision. The accuracy of the method was illustrated through hydrogen solubility measurements in hexadecane and tetralin, which were in close agreement with the values available in the literature. Hydrogen solubilities in Athabasca bitumen vacuum bottoms (ABVB) were reported over a broad range of temperatures (80-250 C) and pressures (0.5-8 MPa)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom