z-logo
open-access-imgOpen Access
Induced Polarization with Electromagnetic Coupling: 3D Spectral Imaging Theory, EMSP Project No. 73836
Author(s) -
F Dale Morgan,
John Sogade
Publication year - 2004
Language(s) - English
Resource type - Reports
DOI - 10.2172/835128
Subject(s) - induced polarization , grain size , mineralogy , borehole , savannah river site , chemistry , analytical chemistry (journal) , soil science , environmental science , geology , materials science , environmental chemistry , physics , electrical resistivity and conductivity , composite material , geotechnical engineering , quantum mechanics , nuclear chemistry , radioactive waste
This project was designed as a broad foundational study of spectral induced polarization (SIP) for characterization of contaminated sites. It encompassed laboratory studies of the effects of chemistry on induced polarization, development of 3D forward modeling and inversion codes, and investigations of inductive and capacitive coupling problems. In the laboratory part of the project a physico-chemical model developed in this project was used to invert laboratory IP spectra for the grain size and the effective grain size distribution of the sedimentary rocks as well as the formation factor, porosity, specific surface area, and the apparent fractal dimension. Furthermore, it was established that the IP response changed with the solution chemistry, the concentration of a given solution chemistry, valence of the constituent ions, and ionic radius. In the field part of the project, a 3D complex forward and inverse model was developed. It was used to process data acquired at two frequencies (1/16 Hz and 1/ 4Hz) in a cross-borehole configuration at the A-14 outfall area of the Savannah River Site (SRS) during March 2003 and June 2004. The chosen SRS site was contaminated with Tetrachloroethylene (TCE) and Trichloroethylene (PCE) that were disposed in this area for several decades till the 1980s. The imaginary conductivity produced from the inverted 2003 data correlated very well with the log10 (PCE) concentration derived from point sampling at 1 ft spacing in five ground-truth boreholes drilled after the data acquisition. The equivalent result for the 2004 data revealed that there were significant contaminant movements during the period March 2003 and June 2004, probably related to ground-truth activities and nearby remediation activities. Therefore SIP was successfully used to develop conceptual models of volume distributions of PCE/TCE contamination. In addition, the project developed non-polarizing electrodes that can be deployed in boreholes for years. A total of 28 of these electrodes were deployed at the SRS site in September of 2002. The project found that (1) currently available field instrumentation need to be faster by an order of magnitude for full SIP to be engaged for broadband characterization in the field, (2) some aspects of the capacitive coupling problem in borehole geometries can be solved by use of a high impedance receiver, (3) a careful investigation of ways to adequately compare inversion results to ground-truth data is warranted, (4) more laboratory studies should be directed to understand the influence of micro-organisms and long residence time of contaminants (aging) on spectral IP properties

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here