z-logo
open-access-imgOpen Access
REACTIVE MULTIPHASE BEHAVIOR OF CO2 IN SALINE AQUIFERS BENEATH THE COLORADO PLATEAU
Author(s) -
R. G. Allis,
Julian K. Moore,
S. M. White
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/834995
Subject(s) - geology , graben , calcite , geochemistry , dome (geology) , radiocarbon dating , aquifer , archaeology , hydrology (agriculture) , deposition (geology) , geomorphology , groundwater , geotechnical engineering , paleontology , structural basin , history , sediment
Field and laboratory investigations of naturally occurring CO{sub 2}-reservoirs are being conducted to determine the characteristics of potential seal and reservoir units and the extent of the interactions that occur between the host rocks and the CO{sub 2} charged fluids. Efforts have focused on the Farnham Dome field, located in central Utah, the Springerville-St. Johns field in Arizona and New Mexico, and most recently, the Crystal Geyser-Salt Wash graben areas with their CO{sub 2}-charged geysers and springs in central Utah. At both the Springerville-St. Johns field and the central Utah CO{sub 2} spring area, there is evidence of extensive travertine deposits that document release of CO{sub 2} to the atmosphere. At Farnham Dome, calcite debris fields appear to be remnants of vein calcite and an earlier period of fluid leakage. The main achievements during this quarter are (1): preparation for a soil gas flux survey in October at the Crystal Geyser --Little Grand Wash fault zone, and the Salt Wash graben; (2) submission of an abstract to the upcoming Measurement, Monitoring and Verification session at the Fall AGU meeting; (3) submission of an invited abstract to the Gordon Conference on Hydrocarbon Resources; and (4) receipt of initial radiocarbon dates of travertine from the Springerville-St Johns field. Analytical results and interpretations of both the travertine deposition and the soil gas surveys are still in progress, and will be included in future quarterly reports

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom