z-logo
open-access-imgOpen Access
Development of Fundamental Data on Chemical Speciation and Solubility for Strontium and Americium in High- Level Waste: Predictive Modeling of Phase Partitioning During Tank Processing
Author(s) -
Andrew R. Felmy,
Gregory R. Choppin,
David A. Dixon
Publication year - 2001
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/833733
Subject(s) - solubility , chemistry , ethylenediaminetetraacetic acid , genetic algorithm , americium , hydroxide , nitrilotriacetic acid , oxalate , hanford site , environmental chemistry , environmental science , inorganic chemistry , chelation , radioactive waste , nuclear chemistry , actinide , organic chemistry , evolutionary biology , biology
In this research program, Pacific Northwest National Laboratory and Florida State University are investigating the speciation of Sr and Am/Cm in the presence of selected organic chelating agents (ethylenediaminetetraacetic acid [EDTA], N-(2-hydroxyethyl)ethylenediaminetriacetic acid [HEDTA], nitrilotriacetic acid [NTA], iminodiacetic acid [IDA], citrate, and oxalate) over ranges of hydroxide, carbonate, ionic strength, and competing metal ion concentrations present in high-level waste stored in tanks at Hanford and other U.S. Department of Energy (DOE) sites. The project comprises integrated research tasks that approach the problem of chemical speciation using macroscopic thermodynamic measurements of metal-ligand competition reactions, molecular modeling studies to identify structures or complexes of unusual stability, and mass spectrometry measurements of complex charge/mass ratio that can be applied to mixed metalchelate systems. This fundamental information then is used to develop thermodynamic models designed to predict changes in chemical speciation and solubility resulting from various tank processing conditions. In this way we can develop new approaches that address fundamental problems in aqueous speciation and, at the same time, provide useful and practical information needed for tank waste processing

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom