Probing a QCD String Axion with Precision Cosmological Measurements
Author(s) -
Patrick J. Fox
Publication year - 2004
Publication title -
high energy physics - theory
Language(s) - English
Resource type - Reports
DOI - 10.2172/833013
Subject(s) - axion , string (physics) , physics , quantum chromodynamics , particle physics , theoretical physics , dark matter
String and M-theory compactifications generically have compact moduli which can potentially act as the QCD axion. However, as demonstrated here, such a compact modulus can not play the role of a QCD axion and solve the strong CP problem if gravitational waves interpreted as arising from inflation with Hubble constant H{sub inf} {approx}> 10{sup 13} GeV are observed by the PLANCK polarimetry experiment. In this case axion fluctuations generated during inflation would leave a measurable isocurvature and/or non-Gaussian imprint in the spectrum of primordial temperature fluctuations. This conclusion is independent of any assumptions about the initial axion misalignment angle, how much of the dark matter is relic axions, or possible entropy release by a late decaying particle such as the saxion; it relies only on the mild assumption that the Peccei-Quinn symmetry remains unbroken in the early universe.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom