Linear Vlasov Analysis for Stability of a Bunched Beam
Author(s) -
R Warnock
Publication year - 2004
Publication title -
osti oai (u.s. department of energy office of scientific and technical information)
Language(s) - English
Resource type - Reports
DOI - 10.2172/829709
Subject(s) - vlasov equation , eigenvalues and eigenvectors , mathematical analysis , beam (structure) , instability , mathematics , physics , nonlinear system , plane (geometry) , stability (learning theory) , action (physics) , function (biology) , complex plane , classical mechanics , plasma , quantum mechanics , geometry , optics , machine learning , evolutionary biology , computer science , biology
We study the linearized Vlasov equation for a bunched beam subject to an arbitrary wake function. Following Oide and Yokoya, the equation is reduced to an integral equation expressed in angle-action coordinates of the distorted potential well. Numerical solution of the equation as a formal eigenvalue problem leads to difficulties, because of singular eigenmodes from the incoherent spectrum. We rephrase the equation so that it becomes non-singular in the sense of operator theory, and has only regular solutions for coherent modes. We report on a code that finds thresholds of instability by detecting zeros of the determinant of the system as they enter the upper-half frequency plane, upon increase of current. Results are compared with a time-domain integration of the nonlinear Vlasov equation with a realistic wake function for the SLC damping rings. There is close agreement between the two calculations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom